

Previous results

Leonora Posega, Students from SuRE and UMMO Winterterm 22/23

Dr. Herena Torio

Agenda

Part 0 – What do we need?

Demands

Part I – First potential analysis
Agent-based model for the community

Part II – First potential analysis
Mini-grid optimization and sizing: the cost of
energy independence

Part III - The challenges
Vulnerability analysis

Electricity access in the region

Municipio	Vereda	Personas residentes	Con Energía	Sin Energía
	Calderas	65	58	7
	Camelias	47	38	9
	El Chocó	112	101	11
	El Tabor	63	56	7
	Fronteritas	47	47	0
SAN CARLOS	La Florida	134	120	14
SAN CARLOS	La Hondita	121	105	16
	La Rápida	33	31	2
	Palmichal	293	277	16
	Pío XII	163	145	18
	Puerto Rico	148	134	14
	Vallejuelos	289	278	11
	Arenal	237	217	20
	El Brasil	245	229	16
	El Guadual	67	67	0
SAN RAFAEL	La Pradera	153	153	0
JAN KAFAEL	La Rápida	231	227	4
	Los Centros	126	120	6
	Playas Cardal	148	148	0
	Quebradona	100	100	0
	Tesorito	74	74	0
	El Chuscal	18	18	0
	La Quiebra	61	59	2
GRANADA	Los Medios	248	239	9
GIVAINADA	La Aguada	182	172	10
	Calderas	No registra	No registra	No registra
	San Miguel	No registra	No registra	No registra
TOTAL		3405	3213	192
TOTAL SOLO EL DRMI		1151	1086	65

Village	With Electricity	Without Electricity
Arenal de San Rafael	217	20
Las Camelias de San Carlos	38	9
Las Florida de San Carlos	120	14
Total	375	43
Percentage	89.7%	10.3%

Fuente: Base de datos municipales SISBEN - 2016. DRP - Estrategia de participación social

Energy for cooking

Tabla 38. Residentes del DRMI y su área de incidencia con combustible para cocción de alimentos

Municipio	Vereda	Personas residentes	Electricidad	Gas propano (cilindro o pipeta)	Material de desecho, leña, carbón de leña	Ninguno
SAN	Calderas	65	26	1	36	2
CARLOS	Camelias	47	6	0	41	0
	El Chocó	112	2	13	94	3
	El Tabor	63	7	6	47	3
	Fronteritas	47	2	6	39	0
	La Florida	134	10	2	122	0
	La Hondita	121	20	13	86	2
	La Rápida	33	1	10	22	0
	Palmichal	293	8	44	220	21
	Pío XII	163	8	3	152	0
	Puerto Rico	148	12	14	115	7
	Vallejuelos	289	0	22	264	3
	Arenal	237	37	49	151	0
	El Brasil	245	16	15	213	1
	El Guadual	67	0	0	67	0
	La Pradera	153	10	0	143	0
SAN RAFAEL	La Rápida	231	21	38	166	6
TONI ALL	Los Centros	126	2	0	118	6
	Playas Cardal	148	24	13	111	0
	Quebradona	100	0	0	100	0
	Tesorito	74	0	0	74	0
	El Chuscal	18	0	0	18	0
GRANADA	La Quiebra	61	16	5	40	0
CITAINA	Los Medios	248	91	28	128	1
	La Aguada	182	2	27	153	0
otal		3405	321	309	2720	55
Total sólo el	n el DRMI	1151	108	104	921	18

Fuente: Base de datos municipales SISBEN - 2016. Y DRP - Estrategia de participación social

Village	Electricity	Gas	Waste
Arenal de San Rafael	37	49	151
Las Camelias de San Carlos	6	0	41
Las Florida de San Carlos	10	2	122
Total	53	51	314
Percentage	13	12	75

Electricity demands

Domestic electricity demands

Notes from first survey, 10 households

- 2,3 person per household
- 8 out of 10 households use washing machine for 1.8 days/week and 2.6 h/day
- every house use 1 refrigerator 7 h/day
- average of 12 LED bulbs in 8 houses and an average of 5.25 h/day
- 4 households with electric oven, less than 1h/day (0.85 kwh)
- 8 houses with blender, being used 5 day per week, less of 1 h/day
- Average demand: 153kWh/month per household

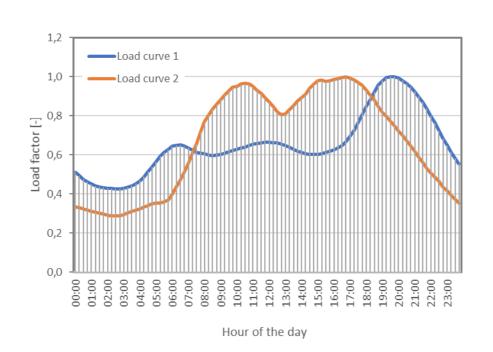
Electricity demands

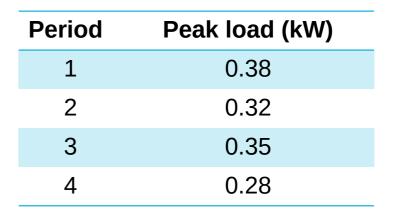
Domestic electricity demands

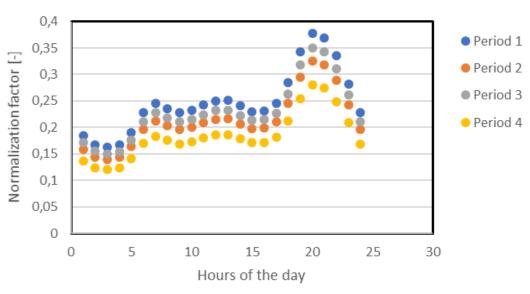
Notes from first survey, 10 households

Average demand: 153kWh/month per household

Yearly consumption 1891 kWh/a	5,2 kWh/day
-------------------------------	-------------

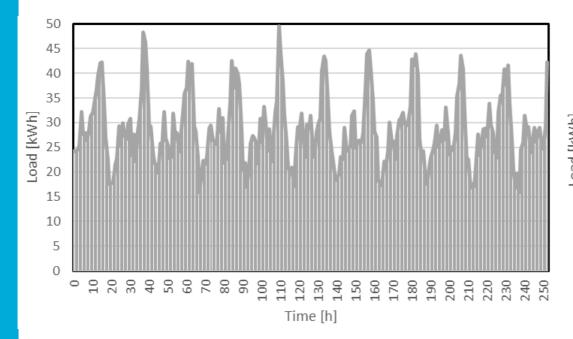

Seasonal pattern

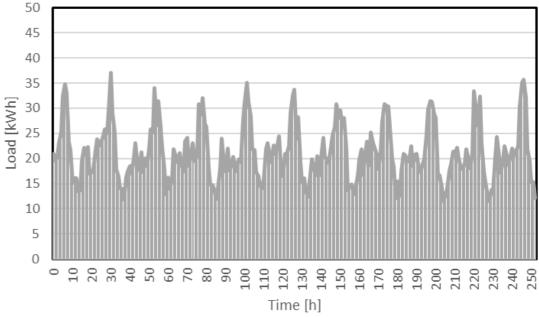

Months	Avg. Consumption (kWh/3 months)	Avg. Consumption (kWh/day)
28 Aug – 30 Nov	536	5,95
30 Nov – 26 Feb	461	5,12
26 Feb – 27 May	496	5,51
27 May – 29 Aug	398	4,42


Electricity demands

Domestic electricity demandsNotes from first survey, 10 households

Normalization factor for daily demands




Electricity demands

Domestic electricity demands

- Relatively high base loads
- Relatively low Seasonal variability

Period	Peak load (kW)
1	0.38
2	0.32
3	0.35
4	0.28

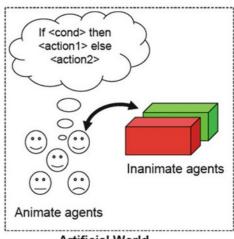
Agenda

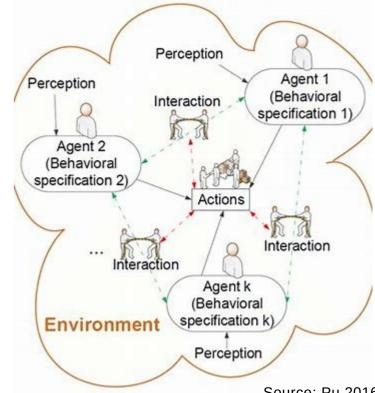
Part 0 – What do we need?

Demands

Part I – First potential analysis
Agent-based model for the community

Part II – First potential analysis
Mini-grid optimization and sizing: the cost of
energy independence

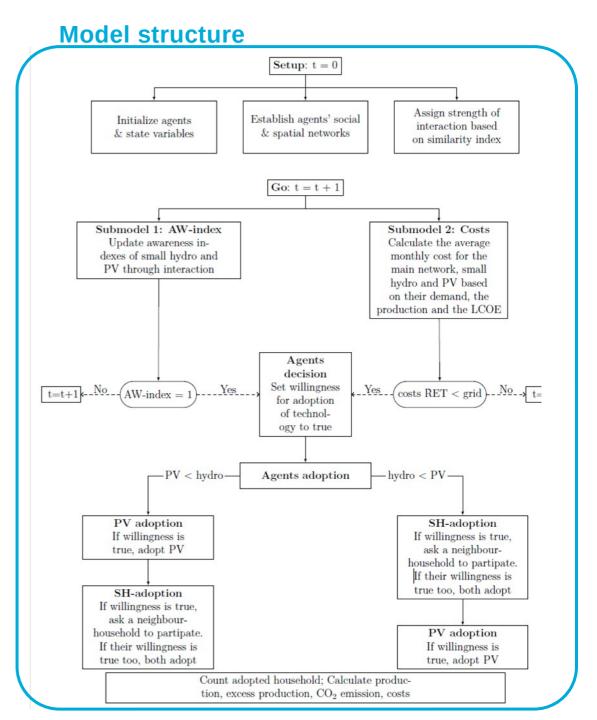

Part III - The challenges
Vulnerability analysis


What are ABMs?

- Simulation model
- Emulate actions and interactions of autonomous agents
- **Agents:** individual or collective entities, people or technologies
- **Aim:** understand the behavior of a system and what governs its outcomes.

Artificial World

Source: Crooks and Heppenstall. 2012



How realistic is a decentralized implementation?

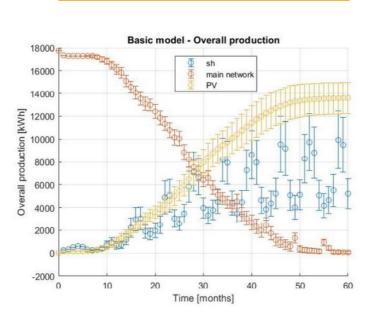
Main input data

Variable	Value	
Demand	153kWh	
Number of households	116	
Ratio of rurals and neo-rurals	50% rurals, $50%$ neo-rurals	
SH initial-AW-index (neo-rurals)	random 0.25-0.5	
PV initial-AW-index (neo-rurals)	0.8 * AW-SH	
SH initial AW-index (rurals)	0	
PV initial AW-index (rurals)	0	
Simi-index (neo-rurals)	0.5 - 1	
Simi-index (rurals)	0 - 0.5	
Costs main grid	$0.165 \ US\$ / kWh$	
LCOE hydro	$0.045 \ US\$ / kWh$	
LCOE PV	$0.11 \ US\$ / kWh$	
CO ₂ emissions main grid	$211,414 \ g \ / kWh$	
CO ₂ emissions hydro	24 g/kWh	
PV CO ₂ emissions	41 g / kWh	

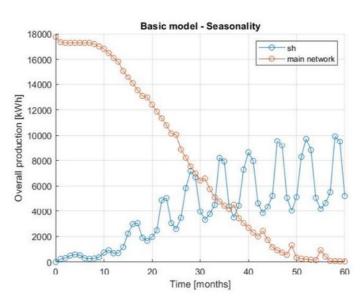
How realistic is a decentralized implementation?

Main input data

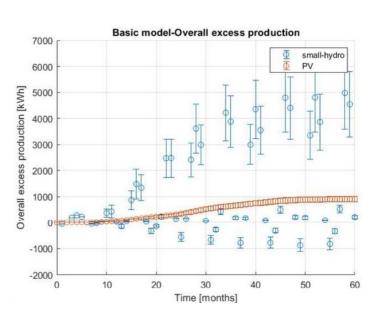
Variable	Value	
Demand	153kWh	
Number of households	116	
Ratio of rurals and neo-rurals	50% rurals, 50% neo-rurals	
SH initial-AW-index (neo-rurals)	random 0.25-0.5	
PV initial-AW-index (neo-rurals)	0.8 * AW-SH	
SH initial AW-index (rurals)	0	
PV initial AW-index (rurals)	0	
Simi-index (neo-rurals)	0.5 - 1	
Simi-index (rurals)	0 - 0.5	
Costs main grid	$0.165 \ US\$ / kWh$	
LCOE hydro	$0.045 \ US\$ / kWh$	
LCOE PV	$0.11 \ US\$ / kWh$	
CO ₂ emissions main grid	$211,414 \ g \ /kWh$	
CO ₂ emissions hydro	24 g/kWh	
PV CO ₂ emissions	41 g / kWh	


Model limits and assumptions

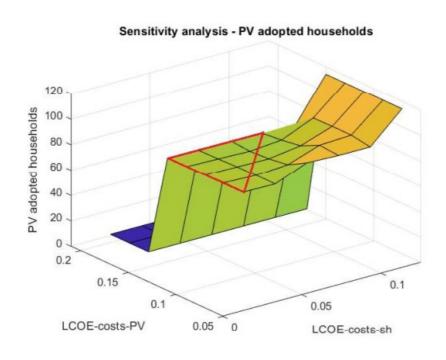
- Ideal battery storage (energy balancing)
 without costs
- LCOEs for hydro and PV rather low
- No business model considered
- No distinction on CAPEX & OPEX

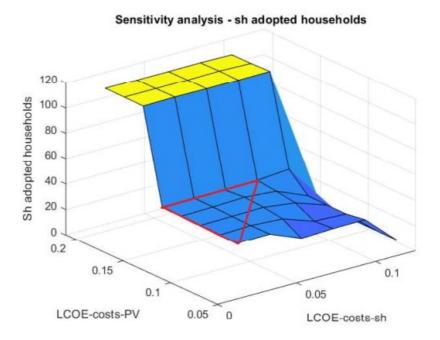


How realistic is a decentralized implementation? Behaviour of the basic model



Seasonality in hydro production


Seasonality in excess electricity



Sensitivity analysis

Influence of LCOE of SH and PV on the number of adopting housholds Base case: $PV_{LCOE} = 11 \text{ kWh}$; $SH_{LCOE} = 0.045 \text{ kWh}$

Agenda

Part 0 – What do we need?

Demands

Part I – First potential analysis

Agent-based model for the community

Part II – First potential analysis

Mini-grid optimization and sizing: the cost of energy independence

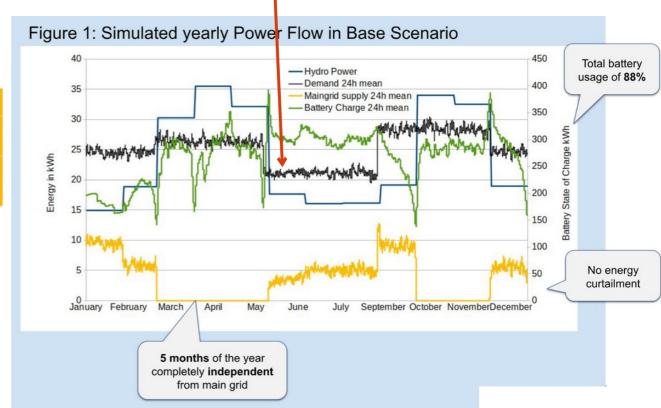
Part III - The challenges

Vulnerability analysis

Technical potential for hybrid PV and hydro mini-grid Input data for different scenarios

Component	CAPEX	OPEX (% of CAPEX over 20 years)
PV	1000 – 3000 \$/kWp	15
Small hydro	1000 – 5000 \$/kW	2%
Battery	2000 – 3000 \$/kWh	20%

- Higher peak loads
- Low rainfall / hydro potential
- 100% RE powered or grid-supported (% of total demand)

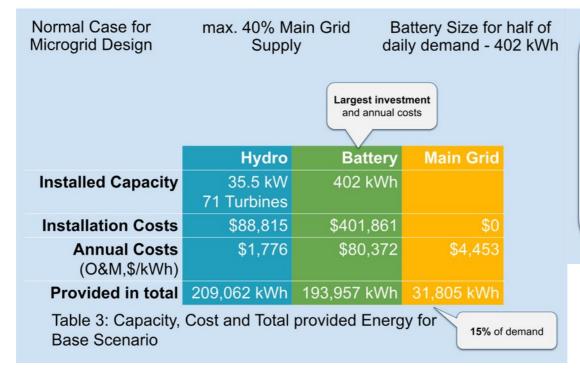

Technical potential for hybrid PV and hydro mini-grid

Authors: Agada, Redemption; Akoto, Bossman; Eckhardt, Markus; Petrin, Geert; Willen, Leonard

Case 1 - Grid supported, with batteries

Financial Principles Initial State of Charge 50% Hydro Photovoltaic Main Grid Battery 2000 \$/kW 2500 \$/kW 2000 \$/kW Investment Cost once 20% of 2% of 15% of Operation Cost per Year Investment Investment

Table 2: Cost Assumptions for Construction and Maintenance



High base loads!!!

Technical potential for hybrid PV and hydro mini-grid

Case 1 - Grid supported, with batteries

	Hydro	Battery	Main grid
nvestment cost	18%	82%	
nnual cost	2%	98%	5%

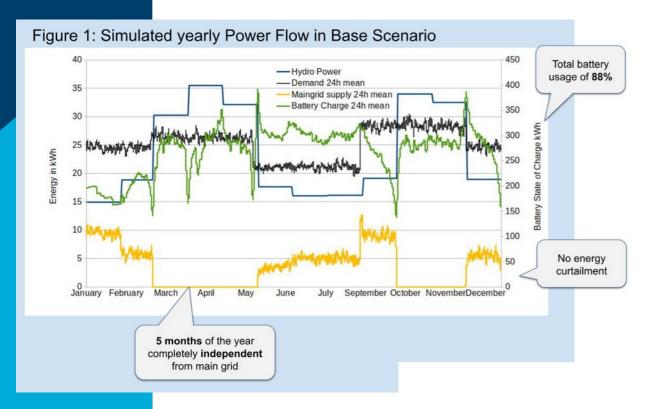
Technical potential for hybrid PV and hydro mini-grid

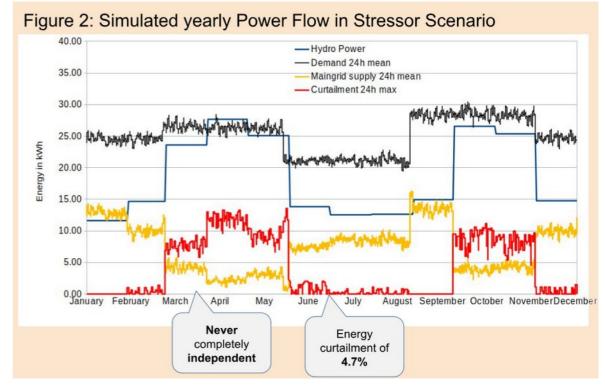
Case 1 - Grid supported, with batteries

Base Scenario	Current Values
Annual cost higher compared to current \$490,677	Installation Costs \$0
values - will never amortize \$86,601	Annual Operation Cost \$30,802
\$1,227,961 ~5x higher energy cost compared to	Net Present Cost of 20 years \$262,240
today \$0.656	LCOE (USD/kWh) \$0.140
85%	Grid Independency ~0%

Technical potential for hybrid PV and hydro mini-grid

Case 1 - Grid supported, WITHOUT batteries

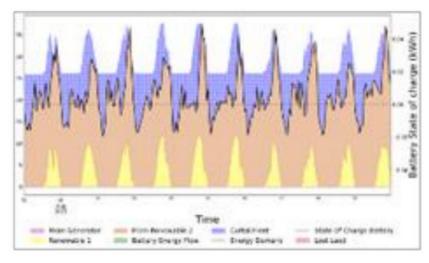

	Largest investment and annual costs				
	Hydro	Battery	Main Grid		
Installed Capacity	35.5 kW 71 Turbines	402 kWh			
Installation Costs	\$88,815	\$401,861	\$0		
Annual Costs (O&M,\$/kWh)	\$1,776	\$80,372	\$4,453		
Provided in total	209,062 kWh	193,957 kWh	31,805 kWh		
Table 3: Capacity, Cost and Total provided Energy for Base Scenario					



Technical potential for hybrid PV and hydro mini-grid

Case 1 - Grid supported, WITHOUT batteries

Technical potential for hybrid PV and hydro mini-grid


Case 1 - Grid supported

Base Scenario		Current Values	Stressor Scenario		
Annual cost higher compared to current	\$490,677	Installation Costs \$0	\$69,277 <	~Double of current yearly cost need to be	
values - will never amortize	> \$86,601	Annual Operation Cost \$30,802	\$11,577	invested	
\$	1,227,961	Net Present Cost of 20	\$167,838		
~5x higher energy cost compared to		years \$262,240			
today	> \$0.656	LCOE (USD/kWh) \$0.140	\$0.090	If feed in tariff gets implemented LCOE will decrease even	
	85%	Grid Independency ~0%	70%	more	

Technical potential for hybrid PV and hydro mini-grid, 100% RE Supply

Case 2 - Blackout, grid Unsupported

- High autarky
- PV for daily peaks
- Hydro for base load
- High excess energy!!

Building upon previous results

Grid Dependence:	HIGH	MEDIUM	LOW
------------------	------	--------	-----

	Base Case	Stressor 1* LLP=0.1/BI=0.5	Stressor 2 LLP=0.01/BI=0
Micro Hydro (kW)	38.95	39.47 (42.5)	57.25
PV (kW)	0	0 (0)	10
Battery (kW)	0	401.86 (0)	0
Total Cost, NPW (\$)	151 488.6	683 715.8 (152 583)	190 751.8
LCOE (\$/kWH_produced)	0.081	0.365 (0.081)	0.102
Excess Energy kWh/a	38 586	33 904 (52 374)	140 658
Level of self supply/ autarchy (%)	50	90 + half day B (90)	99
Lost Load (kWh)	29 388	22 001 (22 001)	2 200

Values for system with no battery independence are given in brackets

Agenda

Part 0 – What do we need?

Demands

Part I – First potential analysis

Agent-based model for the community

Part II – First potential analysis

Mini-grid optimization and sizing: the cost of energy independence

Part III - The challenges

Vulnerability analysis



Part III – The challenges

Vulnerability analysis

Case: grid connected, hydro for base load, inverters in island mode, paralell grid

Energy supply chain

		Small Hydro		Demands			
Category	Subcategory	Potential impacts	Adaptative capacity	Vulnerability	Potential impacts	Adaptative capacity	Vulnerability
Resource variation	Stressor 1 - Blackout	low	high	low	High	Medium	High

Resources:

 Low vulnerability due to island inverters and high community ownership of the hydro generators

Demands:

- Under blackout high risk of unmet peak loads
- Rather low capacity of changing htem if related to refrigeration!

References

Come Zebra et al. 2021. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews Volume 144, July 2021, 111036, https://doi.org/10.1016/j.rser.2021.111036.

Duran and Sahinyazan. 2021. Meta-analysis data of 104 renewable mini-grid projects for rural electrification. Data in Brief 34 (2021) 106739. https://doi.org/10.1016/j.dib.2021.106739; 10.1016/j.seps.2020.100999.

Ikejemba et al. 2017. The empirical reality & sustainable management failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renewable Energy. Volume 102, Part A, March 2017, Pages 234-240. https://doi.org/10.1016/j.renene.2016.10.037

World Bank 2018. Access to Energy is at the Heart of Development. FEATURE STORY APRIL 18, 2018 Link: <a href="https://www.worldbank.org/en/news/feature/2018/04/18/access-energy-sustainable-development-goal-7#:~:text=The%20World%20Bank%20has%20a%20long%20track%20record,for%20example%2C%20through%20programs%20such%20as%20Lighting%20Global (Last accessed: 20.09.2023)

World Bank (Jon Exel) 2020. Mini Grids: Lessons Learned from Around the World. World bank presentation and report. Link: 3.1 Mini Grids Overview - Jon Exel - Addis.pdf (esmap.org),

https://www.esmap.org/sites/default/files/Presentations/3.1%20Mini%20Grids%20Overview%20-%20Jon%20Exel%20-%20Addis.pdf (Last accessed: 20.09.2023)

SE4ALL. State of the Global Mini-grids Market Report 2020. Trends of renewable energy hybrid mini-grids in Sub-Saharan Africa, Asia nd island nations. 2020. Link: https://www.seforall.org/system/files/2020-06/MGP-2020-SEforALL.pdf (Last accessed: 20.09.2023)