

Mini-grids and (rural?) electrification

Dr. Herena Torio

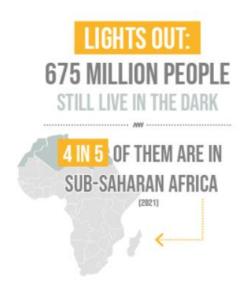
Agenda

Part I - The Context

- The power of mini-grids
- Where and which?
- Types of mini-grids

Part II - The challenges

- Investment and costs
- The forgotten spot


The "power" of mini-grids

"Access to Energy is at the Heart of Development" (Source: World Bank 2018)... ... the world bank says

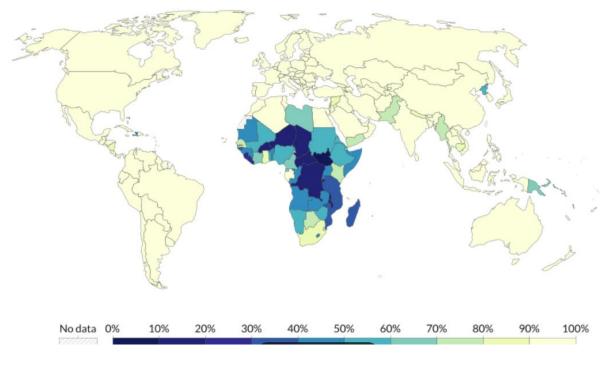
But about

- 750 million people lack access to electricity
- 1.4 billion people are not connected to their national electricity grids (Ikejemba et al., 2017)

Source: UN, Goal 7 | Department of Economic and Social Affairs (un.org)

The "power" of mini-grids

"Access to Energy is at the Heart of Development" (Source: World Bank 2018)... ...the world bank says


But about

- 750 million people lack access to electricity
- 1.4 billion people are not connected to their national electricity grids (Ikejemba et al., 2017)

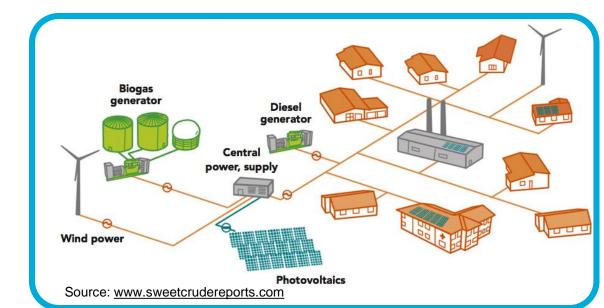
Electricity access, 2020

Share of the population with access to electricity. The definition used in international statistics adopts a very low cutoff for what it means to 'have access to electricity'. It is defined as having an electricity source that can provide very basic lighting, and charge a phone or power a radio for 4 hours per day.

Source: ourworldindata.org

The "power" of mini-grids

"Access to Energy is at the Heart of Development" (Source: World Bank 2018)... ... the world bank says

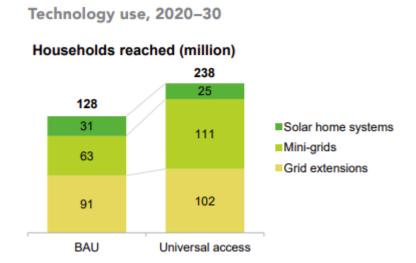

But about

- 750 million people lack access to electricity
- 1.4 billion people are not connected to their national electricity grids (Ikejemba et al., 2017)

And a mini grid is...

... "anything other than the main grid"

(Source: World bank, 2020, p.2)



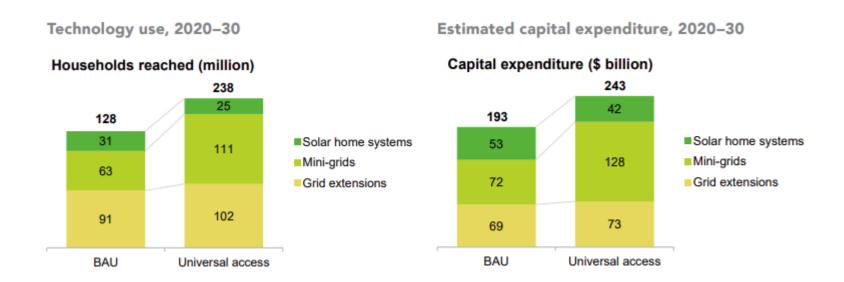
The "power" of mini-grids

To ensure universal electricity access, 238 million households need to get "connection"

- Mini-grids can provide nearly 50% (136 households with the WB definition, 62%)
- Mini-grids are a middle way in terms of costs:

lower than SHS – but higher than grid extension

Source: SE4AII, 2020

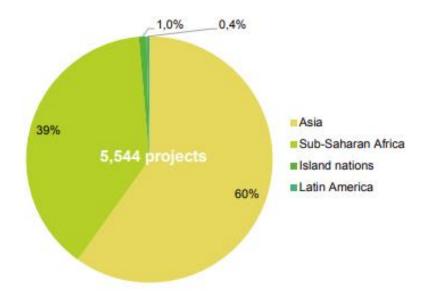


The "power" of mini-grids

To ensure universal electricity access, 238 million households need to get "connection"

- Mini-grids can provide nearly 50% (136 households with the WB definition, 62%)
- Mini-grids are a middle way in terms of costs:

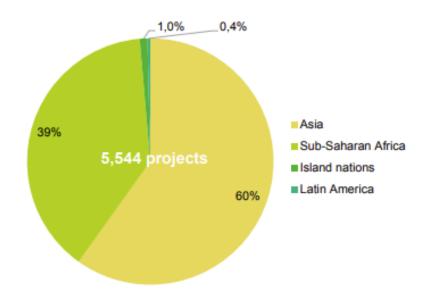
lower than SHS – but higher than grid extension

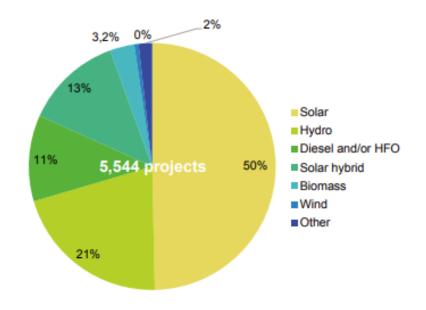

Source: SE4AII, 2020

The "power" of mini-grids

Where are mini-grids installed?

Installed mini-grids by region



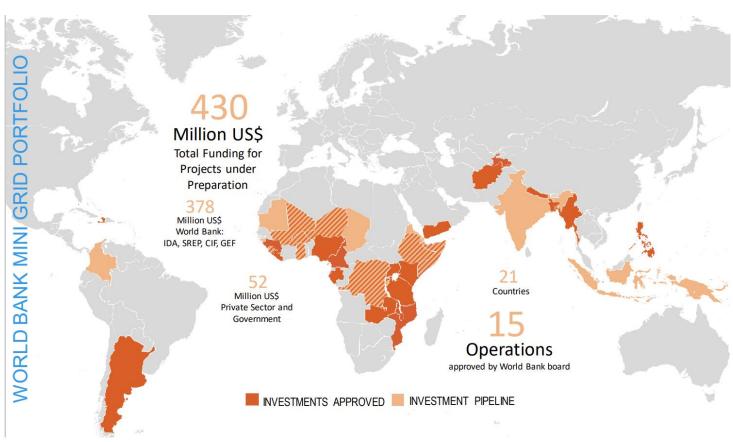

The "power" of mini-grids

Where are mini-grids installed?

Installed mini-grids by region

What type of mini-grids are installed? Installed mini-grids by technology

Source: SE4AII, 2020


The "power" of mini-grids

Source: World Bank 2020

The "power" of mini-grids

Source: World Bank 2020

Agenda

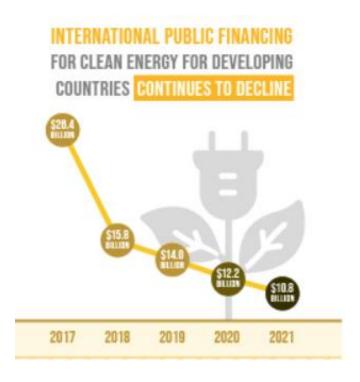
Part I - The Context

- The power of mini-grids
- Where and which?
- Types of mini-grids

Part II - The challenges

- Investment and costs
- The forgotten spot

The bad side of mini-grids?


- About 10% population without access to energy
- Mini-grids may provide about 50-60% of the missing access

But:

 Public investment in the field of RE energy access declining!

Reminder: WB investing 1,7 billion in 2020 and 0,4 billion planned

Source: UN, Goal 7 | Department of Economic and Social Affairs (un.org)

The bad side of mini-grids?

- About 10% population without access to energy
- Mini-grids may provide about 50-60% of the missing access

But:

- Public investment in the field of RE energy access declining!
 - Reminder: WB investing 1,7 billion in 2020 and 0,4 billion planned
- Mini-grids are getting ever less costly!

For comparison:

electricity prices in many countries worldwide around 0.1-0.2 \$/kWh

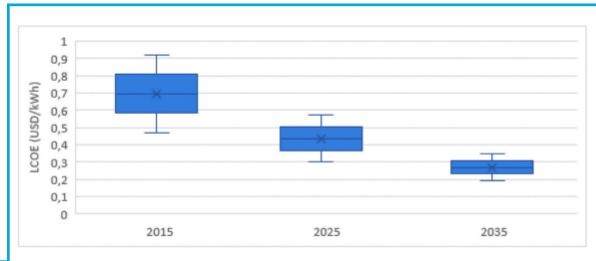


Fig. 2. LCOE for mini-grids in general (2015-2035). Based on IRENA [22].

Source: Come Zebra et al. 2021

Technology specific costs

- For all RE technologies costs are reducing
- Mini-grids are getting ever less costly!

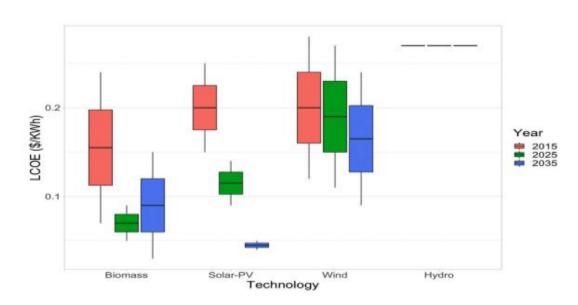
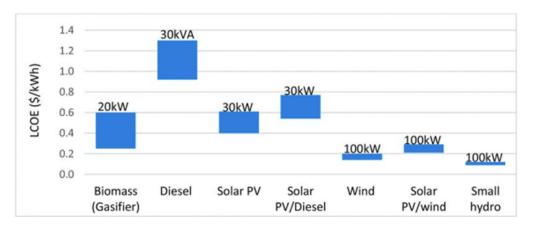
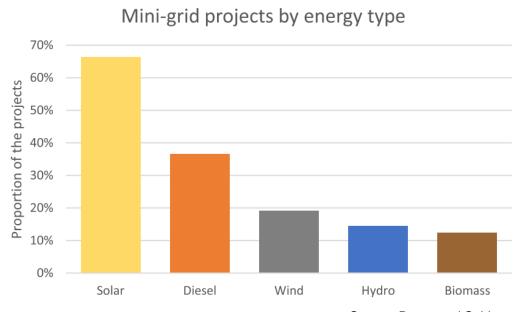



Fig. 3. LCOE for different mini-grids (2015-2035). Based on IRENA [22].

Source: Come Zebra et al. 2021

For comparison:

electricity prices in many countries worldwide around 0.1-0.2 \$/kWh

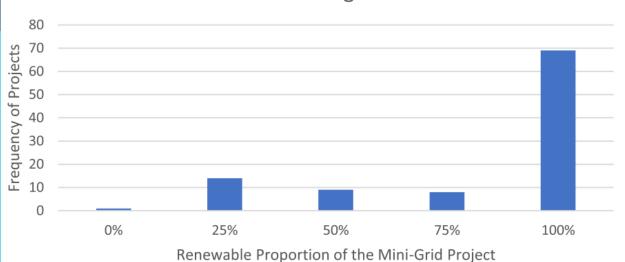


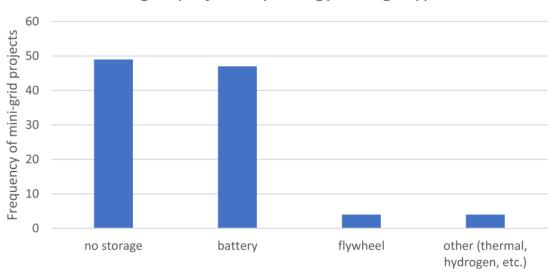
Source: Come Zebra et al. 2021

Technology specific costs and plans

- For all RE technologies costs are reducing
- Mini-grids are getting ever less costly!
- And nearly all plans are RE based!!

Source: Duran and Sahinyazan 2021

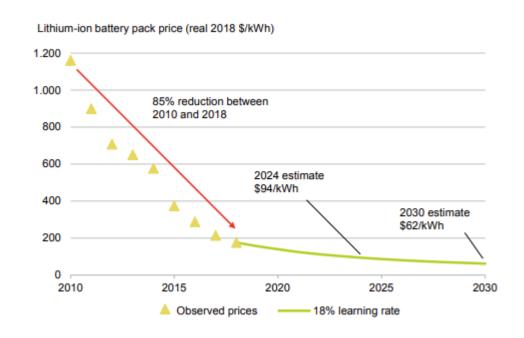

Source: World Bank 2020


Technology specific costs and plans

- Batteries: high capital costs → decreasing trend!
 - but also higher energy supply rate

Mini-grid projects by energy storage types

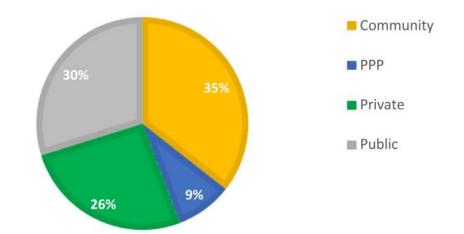
Technology specific costs and plans


- Batteries: high capital costs → decreasing trend!
 - but also higher energy supply rate



Technology specific costs and plans

- Batteries: high capital costs → decreasing trend!
 - but also higher energy supply rate



The forgotten spot: social integration

- Research on 29 projects in sub-Saharan Africa showed that 60% of the minigrids are abandoned six months after being implemented! (Ikejemba 2017)
- Main reasons: Publicly funded and yet now "owned" by the community
 - Lack/absence of local maintenance
 - Lack of acceptance of the technology
 - Lack of knowledge transfer about the system from the installation organization to the locals leading to overload

Ownership distribution of the mini-grid projects

Source: Duran and Sahinyazan, 2021

The forgotten spot: social integration

- Research on 29 projects in sub-Saharan Africa showed that 60% of the minigrids are abandoned six months after being implemented! (Ikejemba 2017)
- Main reasons: Publicly funded and yet now "owned" by the community
 - Lack/absence of local maintenance
 - Lack of acceptance of the technology
 - Lack of knowledge transfer about the system from the installation organization to the locals leading to overload

Success determinants:

"On the other hand, **successful projects** all across the globe share one common property: **having local community ownership**. Top-down approaches that exclude the community's voices in project development almost always fail over the long term"

(Duran & Sahinyazan, 2021, Why renewable energy 'mini-grids' in remote communities fail and how to avoid it (theconversation.com))

Recap

- Mini-grids have the potential to provide universal energy access
 - Cost effectively
 - Renewable based
 - Decentralized
- But...
 - Investment costs are often very high
 - Funding schemes are required
 - AND: projects need to be community owned to be successful on the long term

References

Come Zebra et al. 2021. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews Volume 144, July 2021, 111036, https://doi.org/10.1016/j.rser.2021.111036.

Duran and Sahinyazan. 2021. Meta-analysis data of 104 renewable mini-grid projects for rural electrification. Data in Brief 34 (2021) 106739. https://doi.org/10.1016/j.dib.2021.106739; 10.1016/j.seps.2020.100999.

Ikejemba et al. 2017. The empirical reality & sustainable management failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renewable Energy. Volume 102, Part A, March 2017, Pages 234-240. https://doi.org/10.1016/j.renene.2016.10.037

World Bank 2018. Access to Energy is at the Heart of Development. FEATURE STORY APRIL 18, 2018 Link: <a href="https://www.worldbank.org/en/news/feature/2018/04/18/access-energy-sustainable-development-goal-7#:~:text=The%20World%20Bank%20has%20a%20long%20track%20record,for%20example%2C%20through%20programs%20such%20as%20Lighting%20Global. (Last accessed: 20.09.2023)

World Bank (Jon Exel) 2020. Mini Grids: Lessons Learned from Around the World. World bank presentation and report. Link: 3.1 Mini Grids Overview - Jon Exel - Addis.pdf (esmap.org),

https://www.esmap.org/sites/default/files/Presentations/3.1%20Mini%20Grids%20Overview%20-%20Jon%20Exel%20-%20Addis.pdf (Last accessed: 20.09.2023)

SE4ALL. State of the Global Mini-grids Market Report 2020. Trends of renewable energy hybrid mini-grids in Sub-Saharan Africa, Asia nd island nations. 2020. Link: https://www.seforall.org/system/files/2020-06/MGP-2020-SEforALL.pdf (Last accessed: 20.09.2023)